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DEFINITION OF VARIABLES 
 
α  Shape parameter for gamma distribution; larger values of α  yield a narrower 

distribution 

c Speed of light (2.997e8 m/s) 

C Correlation factor (0$<C<$1) to determine overlap between range gates 

D Particle diameter (m) 

dBZ Radar Reflectivity Factor; proportional to 6D  

dBZe Radar Equivalent Reflectivity Factor; radar measured dBZ assuming Rayleigh 
scatterers (used with millimeter wave radars when particles are often Mie scattered). 

ELWC RMS error of the neural net estimated liquid water content (g/m3) 

EMVD Relative RMS error of the neural net estimated MVD (%) 

EMZD Relative RMS error of the neural net estimated MZD (%) 

f Frequency (Hertz) 

γ  Shape parameter for gamma distribution.  Larger γ  values yield narrower 
distributions 

wk  Extinction due to liquid water (dB/km) 

K Complex quantity related to the index of refraction of water or ice 

λ  Electromagnetic wavelength (m) 

aL  Atmospheric loss (dB/km) 

LWC  Liquid water content (g/m3) 

MD Mean Diameter ( mµ ) 

MVD Mean Volume Diameter ( mµ ) 

MZD Mean Z Diameter ( mµ ) 

LWCNN Neural Net Estimated Liquid Water Content (g/m3) 

MVDNN Neural Net Estimated Mean Volume Diameter ( mµ ) 
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MZDNN Neural Net Estimated Mean Z Diameter ( mµ ) 

η  Volume backscattering coefficient (m2/m3) 

N Index of refraction 

Ni  Number of input nodes in neural network 

Nr Number of range gates sampled by neural network 

Nf Number of frequencies sampled by neural network 

Np Number of output parameters of the neural network 

No Number of output nodes in neural network 

Nave Number of radar samples averaged (power average) 

N0  Number density parameter for the Marshall-Palmer distribution 

φ  General angular variable 

azφ  Scan range in azimuth (radians) 

elφ  Scan range in elevation (radians) 

p(r) Drop size distribution (number of drops per cubic meter per meter diameter) 

Pt Radar transmit power (W) 

Prmin Minimum detectable received power (W) 

rc  Mode radius (radius corresponding to the peak value of the drop size distribution) 

r Particle radius ( mµ ) 

R  Radar range (m) 

τ  Pulse length (s) 

Z Cloud reflectivity (mm6/m3).  Zvv is the copolarized reflectivity for transmission and 
reception of vertical polarization; Zhh is the copolarized reflectivity for transmission 
and reception of horizontal polarization; and Zvh is the cross-polarized reflectivity, for 
transmission of horizontal and reception of vertical polarization. 
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EXECUTIVE SUMMARY 

This report addresses the results obtained in the application of a neural network algorithm 
employing simulated radar signals to ascertain the icing potential of various cloud/participation 
parameters.  In 1997, a study was conducted to assess remote sensing techniques for the detection 
and mapping of aircraft icing potential.  After analyzing a variety of active and passive remote 
sensor combinations, multifrequency radar was identified as the most promising technology to 
address the problem.  The technique involves simultaneous processing of 10, 35, and 95 GHz 
radar reflectivity profiles with an artificial neural network to estimate liquid water content 
(LWC) and drop size in clouds and precipitation.  Computer simulations indicated that LWC, 
mean volume diameter (MVD), and mean z diameter (MZD) can be estimated with reasonable 
accuracy, even in the presence of significant (1 dB) measurement errors.  To further investigate 
this technique, the Federal Aviation Administration (FAA) in collaboration with the National 
Aeronautics and Space Administration Glenn Research Center (NASAGRC) and the U.S. Army 
Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL), 
commissioned Quadrant Engineering Inc. (QEI) to test the neural network algorithm with real 
cloud and precipitation data.  QEI was provided aircraft-sampled drop size distributions, which 
were processed into profiles of actual LWC, MVD, MZD, and corresponding profiles of radar 
reflectivity at each radar frequency.  The radar reflectivity profiles were then processed with the 
neural network to estimate LWC, MVD and, MZD.  It was found that the three-frequency neural 
network estimated LWC to within 0.1 g/m3 (for a data set with a mean LWC 0.152 g/m3), MVD 
to within 90%, and MZD to within 40% compared to the parameters measured by the aircraft 
probes.  The tests also revealed that a 10-95 GHz radar performance in liquid clouds and 
precipitation is similar to that of a three-frequency system. 
 
The multifrequency technique is not as well suited to measure the size parameter MVD as MZD, 
which is more strongly affected by the largest drops that dominate reflectivity.  Neither of these 
parameters are necessarily correlated with the more conventional MVD, particularly for bimodal 
drop size distributions.  The MVD behaved very erratically for the bimodal distributions 
analyzed. 
 
The results also indicate that in small (Rayleigh) drop size and high LWC conditions, the 10-35-
95 or 10-95 GHz radar combinations can effectively estimate LWC, MVD, and MZD at finer 
than 1-km range resolution.  The potential benefit of this capability is that in the most hazardous 
conditions, an operational system will be able to provide pilots and ground crew more resolved 
maps of the spatial extent and intensity of icing potential. 
 
Median volume diameter, denoted by MeVD in this report, is the droplet size parameter used in 
icing certification, icing wind tunnels, and ice accretion codes.  It was investigated as part of the 
study, but no results are included in the report.  The parameter was found to behave erratically for 
bimodal distributions, which were reasonably well represented in the data set and are believed to 
be not uncommon in supercooled large droplet (SLD) conditions in the atmosphere. 
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It is expected that the accuracy of the estimated liquid cloud and precipitation parameters will 
depend on: 
 
1. Matching the sample volumes of the different radar frequencies. 

2. The precision of radar reflectivity measurements (a function of signal-to-noise ratio, the 
number of independent samples averaged, and nonlinearity of the radar receiver). 

3. Variations in Mie scattering (due to large particles) from range cell to range cell. 

4. Absolute calibration of the X-band channel. 

5. Ice water content in the radar sample volume. 
 
For this study, ice particles present in the real cloud and precipitation rate were not included in 
the analysis. 
 
Work is now under way to test the multifrequency radar technique with real radar measurements.  
During the Mount Washington Icing Sensors Project, April 1999 (MWISP '99), coincident 10-, 
35-, and 95-GHz radar reflectivity profiles and corresponding in situ observations were collected 
in conditions ranging from drizzle to mixed phase and ice clouds.  Also, the Alliance Icing 
Research Study (AIRS 1999) was conducted in Mirabel, Quebec, where weather conditions were 
favorable for the observation of supercooled liquid clouds and drizzle. 
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BACKGROUND 

STATEMENT OF THE PROBLEM. 

In 1997, a study was conducted to assess remote sensing techniques for the detection and 
mapping of aircraft icing potential [1].  The problem was constrained to a forward-looking 
volume imaging remote sensing system capable of measuring cloud and precipitation parameters 
such as liquid water content (LWC) and drop size at about 1-km range resolution out to  
20-30 km.  The measurement concept for an in-flight sensor system is illustrated in figure 1.   
 

 
 

FIGURE 1.  MEASUREMENT CONCEPT OF AN IN-FLIGHT ICING DETECTION 
REMOTE SENSING SYSTEM 

 
After analyzing a variety of active and passive remote sensor combinations, multifrequency radar 
was identified as the most promising technology for the problem.  The technique involves the 
simultaneous processing of 10, 35, and 95 GHz radar reflectivity profiles with an artificial neural 
network to estimate LWC and drop size in clouds and precipitation.  Computer simulations 
indicated that LWC, drop size (measured as medium volume diameter (MVD)), and mean z 
diameter (MZD) can be estimated with reasonable accuracy, even in the presence of significant 
(1 dB) estimation errors.  The procedure of this computer simulation is summarized in figure 2.  
The simulation first generated a large set of artificial cloud and precipitation conditions, specified 
in terms of profiles of drop size distributions.  From these drop size distributions, the computer 
algorithm then calculated the corresponding radar observed reflectivity profiles at each operating 
frequency as well as LWC and drop size in each volume cell.  This set of multifrequency radar 
reflectivity (inputs) and cloud and precipitation parameter profiles (outputs) were then used to 
train an artificial neural network.  A statistically independent, but still simulated, data set was 
used to evaluate the ability of the neural net to estimate LWC and drop size from the radar data. 
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FIGURE 2.  EVALUATION OF THE MULTIFREQUENCY RADAR TECHNIQUE FOR 
THE MEASUREMENT OF CLOUD AND PRECIPITATION PARAMETERS WITH 

SIMULATED DATA 
 
MULTIFREQUENCY RADAR. 

Multifrequency radar has an excellent potential for probing cloud particle parameters due to the 
combination of moderate attenuation and adequate scattering cross section.  In the original 1998 
study, Quadrant Engineering Inc. (QEI) formulated a working hypothesis that cloud parameters 
could be extracted by measuring backscatter at a combination of attenuating and nonattenuating 
frequencies.  Since scattering is a complex nonlinear function of particle size and frequency, it  
is impractical to consider an analytical solution to the inverse problem of computing particle  
size and liquid water content based on measured backscattered power at multiple frequencies.  
QEI, therefore, focused its efforts on an approximate numerical solution to the inversion, 
specifically, a neural network.  The network was trained by simulating thousands of test cases of 
radar scattering from assumed particle size distributions. 
 
The inverse problem of extracting cloud parameters from the measured range profiles of 
backscattered power is a good example of a problem without well defined rules for estimation.  
The forward problem is straightforward for a given drop size distribution, reflectivity and 
attenuation can easily be calculated using Mie scattering formulas.  Also, cloud and precipitation 
properties, such as LWC or rain rate, can be directly calculated from drop size distribution.  
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Solving the inverse problem, that is, calculating cloud parameters from measured reflectivity 
profiles, is very difficult, due to the nonlinearity of the forward problem.  Neural nets are ideal 
for solving problems where the forward problem is well characterized but the inverse is nonlinear 
and complicated. 
 

PROCEDURE 

TEST DATA SET. 

The objective of this study was to further test the multifrequency radar technique with real cloud 
and precipitation data.  The original QEI study [1] was conducted with simulated cloud and 
precipitation data based on the Gamma drop size distribution model [2], which does not include 
irregular, multimodal distribution shapes.  Real conditions of course do include such shapes.  
Moreover, it was assumed that the weather conditions were somewhat correlated from range cell 
to range cell.  It is uncertain how well this model represents real world conditions and therefore, 
the validity of the results of the original study came into question.  To test the algorithm with real 
cloud and precipitation data, the Federal Aviation Administration (FAA) in collaboration with 
the National Aeronautics and Space Administration Glenn Research Center (NASAGRC) and the 
U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL), 
provided QEI with 244 aircraft-sampled drop size distributions.  Each distribution corresponds to 
a segment of data collected during a flight leg.  The time interval between segments is anywhere 
from a few seconds to several days.  The data set was collected during the Supercooled Large 
Droplet (SLD) Icing Research Flights, on January 24 and 27 and March 20, 1997 and February 4, 
1998, as part of the FAA/NASA/National Center for Atmospheric Research (NCAR) SLD Icing 
Flight Research Program, in conditions ranging from clouds to drizzle and rain.  The 244 drop 
size distributions were processed into five range gate profiles of actual LWC, MVD, MZD, and 
corresponding profiles of radar reflectivity at each radar frequency.  The radar reflectivity profiles 
were then processed with the neural network to estimate LWC, MVD, and MZD.  Ice particles 
were present in some of the sampled clouds and precipitation, but were not included in the 
analysis. 
 
No results are presented in this report for median volume diameter (MeVD).  In light of its 
prominent role in aircraft icing engineering, it was investigated.  However, it was found that a 
fair percentage of the drop size distributions were bimodal and that the MeVD behaved 
erratically for these distributions, in one case jumping between 20 and 400 microns for just about 
identical cloud/drizzle conditions.  MeVD tends to approximate MVD for unimodal 
distributions, but not for bimodal distributions.  Thus, results presented in this report for MVD 
cannot be taken as representative of MeVD.  The definition of MeVD suggests that it may be 
incompatible with the integrated measurements of remote sensors, and this investigation lends 
support to that view.   
 
The scatter plots of LWC vs MVD and MVD vs mean diameter (MD) seen in figures 3 and 4 
illustrate the distribution of the data.  The data set was subdivided into three regions to examine 
algorithm performance in specific conditions:  (1) small drops, low LWC (MVD < 300 
micrometers, LWC < 0.2 g/m3);  (2) large drops (MVD > 300 micrometers); and (3) small drops, 
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large LWC (MVD < 300 micrometers, LWC > 0.2 g/m3).  The thresholds were chosen to 
correspond to apparent natural breaks in the data. 
 

 
FIGURE 3.  LIQUID WATER CONTENT (LWC) VS MEAN VOLUME DIAMETER (MVD) 

SCATTER PLOT OF THE TEST DATA SET (Aircraft-sampled drop size distributions) 
 

 
 

FIGURE 4.  MEAN DIAMETER (MD) VS MVD SCATTER PLOT OF TEST DATA 
(Wide distributions are indicated by a significant difference between MVD and MD.) 
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Many points in figure 4 indicate a great difference between MVD and MD, which suggests a 
large number of wide size distributions.  Closer examination of individual distributions revealed 
that many of these wide distributions had bimodal shapes.  One of these is plotted in figure 5. 
 

 
 

FIGURE 5.  A BIMODAL DROP SIZE DISTRIBUTION OF THE NASA TEST DATA SET 
 
The 244 drop size distributions were grouped into 240, five element profiles.  First, the 244 
distributions were arranged according to increasing time; the distribution with the earliest time 
stamp was the 1st and the one with the last was the 244th.  Then the first profile was constructed 
using the 1st, 2nd … 5th drop size distributions, the second profile using the 2nd, 3rd … 6th 
distribution, and so on until the last, 240th profile was formed with the 240th, 241st … 244th 
distribution.  This was done to try to reconstruct the spatial variability in the cloud and 
precipitation conditions along the aircraft flight line.  Since the data was collected over long 
flight segments, the majority of distribution sequences well represent this spatial variation, on 
scales similar to the range resolution used in the simulations.  The procedure for the analysis was 
similar to the original computer simulation but with real drop size distribution.  This procedure is 
illustrated in figure 6. 
 
Using Mie scattering and extinction equations, the radar-observed reflectivity profiles were 
calculated (including attenuation), as well as corresponding “actual” LWC, MVD, and MZD for 
each range cell (range gate).  The calculated radar reflectivity profiles were then entered as inputs 
to the neural network to estimate cloud parameters.  The neural net, again, estimated the cloud 
parameters in the middle three range cells (in the 2nd, 3rd, and 4th range gates). 
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FIGURE 6.  PROCEDURE FOR THE EVALUATION OF THE MULTIFREQUENCY 
TECHNIQUE WITH REAL CLOUD AND PRECIPITATION DATA 

 
NEURAL NETWORK AND THE SYNTHETIC TRAINING DATA SET. 

The neural network topography used in this study was the same as in the original study [1] 
carried out by QEI.  The three-frequency network consisted of 15 input nodes (five range gates at 
three frequencies), a 20- and a 12-node hidden layer, and a 9-node output layer.  The two-
frequency networks had 10 input nodes, a 15- and a 12-node hidden layer and, again, a 9-node 
output layer.  The nine outputs were LWC, MVD and MZD, corresponding to the middle three 
(out of five) range gates.  The net topology, training, and data processing were implemented with 
the Stuttgart Neural Network Simulator (SNNS) [3] software executed on a PC computer running 
the Linux 6.0 operating system.   
 
In the original study, the multifrequency reflectivity profiles were directly used as inputs to the 
neural net.  This type of configuration, however, must assume absolutely calibrated and 
unattenuated reflectivity measurements in the first range gate at all frequencies.  This is an 
unnecessary constraint on the algorithm and an unrealistic requirement on the easily attenuated 
millimeter wavelength reflectivity measurements.  The primary need for millimeter wave data is 
to estimate LWC from differential reflectivity gradients that can be derived from uncalibrated 
radar profiles.  The neural network input data was, therefore, slightly modified in this study.  The 
five-element (5 range gates) radar equivalent reflectivity factor vectors, ZKa and ZW, in units of 
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dBZe, were combined to calculate the following two, five-element differential reflectivity 
gradient vectors, KaXZ −∆  and WXZ −∆ , normalized to the first element: 
 

( ) ( )[ ]11 KaXKaXKaX ZZZZZ −−−=∆ −  (dB) 

and 

( ) ( )[ ]11 WXWXWX ZZZZZ −−−=∆ −  (dB) 
 
where ZX (1), ZKa (1), and ZW (1) represent radar observed reflectivity factors in the first range 
gate of the X, Ka, and W-band radars in dBZe.  Note that the three-frequency net was applied to 
all three vectors, XZ , KaXZ −∆ , and WXZ −∆ , while the two-frequency 10-35 GHz and 10-95 GHz 
nets only used vectors ],[ KaXX ZZ −∆  and ],[ WXX ZZ −∆ .   
 
The neural networks were trained with the simulated liquid cloud and precipitation model based 
on modified gamma drop size distribution [2] but tested with radar reflectivity and cloud 
parameters generated from real drop size distributions.  The modified gamma distribution relates 
liquid drop diameters to the number of drops per drop size interval in a unit volume according to: 
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and α and γ are shape parameters, D is the drop diameter, and Rc is the mode radius of the 
distribution.  The following modified gamma distribution parameters were used to generate the 
10,000 profile training data set: 
 
• Rc varied from 0.5 to 200 micrometers, 
• LWC from 0.001 to 2 g/m3,  
• γ  from 0.3 to 1.8,  
• and α  from 0.1 to 4.1. 
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Also, temperature was assumed to uniformly vary from –15° to +5°C in the Mie scattering and 
extinction equations [2], used for calculation of radar observed reflectivity profiles.  For each 
profile, a 70% range cell to range cell correlation was assumed in the distribution parameters and 
temperature.   
 
Neural network performance was evaluated using radar reflectivity and cloud parameters 
calculated from the aircraft-sampled drop size distributions.  The cloud parameters MVD, MZD, 
and LWC, calculated directly from the measured drop size distributions, were compared with the 
neural net estimated cloud parameters using the radar reflectivity profiles as inputs.  The error 
was measured two ways:  (1) by evaluating the correlation coefficient1 between actual and 
estimated cloud parameters and (2) by calculating root mean squared (RMS) error.  It was found 
in the original study that errors in estimating drop size scaled linearly with size, so for MVD and 
MZD the error was expressed in terms of percentage RMS error relative to drop size (MVD or 
MZD).  The following equations were used to evaluate the RMS error in the neural network 
estimated LWC, MVD, and MZD:   
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where LWC, MVD, and MZD are the cloud parameters calculated from actual drop size 
distributions; LWCNN, MVDNN, and MZDNN are the neural network estimated cloud parameters; 
and N is the number of samples considered for the error calculations. 
 

                                                 
1 The correlation coefficient, xyρ , of a pair of N element data sets, x and y, is defined according to: 
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µµµµρ , where xµ and yµ are the averages of the x and 

y data sets, respectively. 
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RESULTS 

The performance of the 10-35-95, 10-95, and 10-35 GHz frequency neural network was 
evaluated for 2 km, 1 km, and 500 m range resolutions and range cell size for the clusters of 
cloud and precipitation conditions shown in figure 3.  As stated previously, it was assumed that 
the radar signal only contained 1 dB STD error for 1- and 2-km range cell size and 0.5 dB STD 
error for 0.5 km range cell.  Signal-to-noise-ratio effects and distance from radar to cloud were 
not included in the analysis.  First as a reference, in figure 7, results of the synthetic data set are 
presented for 10-35-95 GHz network using 1 km range resolution and when 1 dB STD error was 
applied to the simulated reflectivity profiles.  The results of the NASA data set are presented in 
figures 8-10.  The results will illustrate the strengths and weaknesses of the various frequency 
combinations.  It is evident that the approximate magnitude of the errors in the cloud parameters 
estimated from the real (NASA) data set is similar to the errors in the synthetic parameters, 
indicating that the synthetic drop size distributions used to train the net adequately represent real 
world conditions.   
 
LWC:  For the majority of cases tested the neural net estimated LWC values are accurate to 
within about 0.1 g/m3.  The accuracy of the estimated LWC is even better when 95 GHz data is 
included, confirming the sensitivity of 95 GHz reflectivity gradient to LWC.  It is expected, 
however, that this same attenuation that makes 95 GHz radar sensitive to LWC will rapidly 
degrade the sensitivity of the 95 GHz measurements with increasing range, making it ineffective 
beyond about 10 km.  The 10-35 GHz frequency combination should have better long range 
capability, but the lack of sensitivity to LWC will make it less accurate and suitable for only 
coarse spatial resolution (1 km +) measurements. 
 
Drop Size Estimation:  The errors in the estimated MZD using any of the three frequency 
combinations (10-35, 10-95, and 10-35-95 GHz) remain below about 100 microns g/m3 and 
improve with smaller drop sizes, while MVD errors are slightly worse about 200 microns.  This 
is not surprising, since the X-band radar measured reflectivity is, in most conditions, proportional 
to the 6th moment of the drop size distributions and, consequently, better correlated with MZD 
than MVD.  Actually, the results raise the question whether the technique is sufficiently precise 
to estimate the difference between MZD and MVD.  This lack of ability to estimate more than 
one size parameter is evident in the opposing signs of the estimation errors of MVD and MZD.  It 
appears that the net estimates a size parameter somewhere smaller than the 6th moment, causing a 
small error most noticeable for small, Rayleigh particles and broad spectral widths.  The presence 
of ice particles in clouds and precipitation affects radar reflectivity and may affect the results of 
the analysis, since the ice particles were not included in the cloud and precipitation clusters 
evaluated.  
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FIGURE 7.  NEURAL NET ESTIMATION ERROR (NEURAL NET 

ESTIMATED SIMULATED QUANTITY) FOR THE 10-35-95 GHz FREQUENCY 
COMBINATION USING SIMULATED DATA POINTS 

 

FIGURE 8.  NEURAL NET ESTIMATION ERROR (NEURAL NET 
ESTIMATED AIRCRAFT-SAMPLED QUANTITY) FOR THE 10-35-95 GHz FREQUENCY 

COMBINATION USING ALL THE NASA DATA POINTS 
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FIGURE 9.  NEURAL NET ESTIMATION ERROR (NEURAL NET 

ESTIMATED AIRCRAFT-SAMPLED QUANTITY) FOR THE 10-95 GHz FREQUENCY 
COMBINATION USING ALL OF THE NASA DATA POINTS 

 

FIGURE 10.  NEURAL NET ESTIMATION ERROR (NEURAL NET 
ESTIMATED AIRCRAFT-SAMPLED QUANTITY) FOR THE 10-35 GHz FREQUENCY 

COMBINATION USING ALL OF THE NASA DATA POINTS 
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The results of all the tested frequency combinations, range resolutions, and cloud and 
precipitation conditions are summarized in tables 1, 2, 3, and 4.  Scatter plots corresponding to 
each entry in the tables are provided in appendix A (the scatter plots may actually be better 
indicators of algorithm performance than the table entries). 
 

TABLE 1.  ERROR OF THE NEURAL NET ESTIMATED PARAMETERS FOR 
ALL DATA POINTS 

Error (All Data)  
10-95 GHz 10-35-95 GHz 10-35 GHz 

LWC g/m3 0.05 0.05 0.06 
MVD % 75 69 78 2-km Range 

Resolution 
MZD % 26 28 23 

LWC 0.05 0.06 0.10 
MVD 76 89 99 1-km Range 

Resolution 
MZD 33 37 34 
LWC 0.08 0.08 0.09 
MVD 87 92 97 0.5-km Range 

Resolution 
MZD 26 32 25 

 
 

TABLE 2.  ERROR OF THE NEURAL NET ESTIMATED PARAMETERS FOR 
 SMALL DROPS AND LOW LWC 

Error (Small Drops and Low LWC)  
10-95 GHz 10-35-95 GHz 10-35 GHz 

LWC g/m3 0.04 0.03 0.06 
MVD % 53 93 63 2-km Range 

Resolution 
MZD % 18 33 15 

LWC 0.04 0.05 0.07 
MVD 49 121 66 1-km Range 

Resolution 
MZD 17 50 17 
LWC 0.05 0.04 0.06 
MVD 63 116 75 0.5-km Range 

Resolution 
MZD 15 33 17 
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TABLE 3.  ERROR OF THE NEURAL NET ESTIMATED PARAMETERS FOR 
LARGE DROPS 

Error (Large Drops)  
10-95 GHz 10-35-95 GHz 10-35 GHz 

LWC g/m3 0.05 0.05 0.05 
MVD % 42 58 30 2-km Range 

Resolution 
MZD % 14 22 10 

LWC 0.05 0.06 0.07 
MVD 51 73 51 1-km Range 

Resolution 
MZD 24 29 24 
LWC 0.09 0.09 0.06 
MVD 51 85 27 0.5-km Range 

Resolution 
MZD 17 32 12 

 
 

TABLE 4.  ERROR OF THE NEURAL NET ESTIMATED PARAMETERS FOR 
SMALL DROPS AND HIGH LWC 

Error (Small Drops and High LWC)  
10-95 GHz 10-35-95 GHz 10-35 GHz 

LWC g/m3 0.07 0.06 0.09 
MVD % 32 58 36 2-km Range 

Resolution 
MZD % 12 33 14 

LWC 0.07 0.07 0.16 
MVD 28 74 54 1-km Range 

Resolution 
MZD 16 33 17 
LWC 0.08 0.07 0.17 
MVD 31 73 55 0.5-km Range 

Resolution 
MZD 13 30 14 

 
CONCLUSIONS 

Results indicate that the multifrequency technique, in combination with the artificial neural 
network processing algorithm, can estimate LWC, MVD, and MZD with fair accuracy in a wide 
variety of liquid cloud and precipitation conditions.  The synthetic cloud and precipitation model 
used to train the neural network may be an adequate representation of real world conditions, 
since the algorithm gave fair performance even in bimodal drop size conditions. 
 
While MVD and MZD can be estimated at similar accuracy using any of the three (10-35, 10-95, 
or 10-35-95 GHz) radar combinations, only the 10-95 or 10-35-95 GHz frequency combinations 
can be used to estimate LWC consistently. 
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The multifrequency technique is not as well suited to measure the size parameter MVD as MZD, 
which is more strongly affected by the largest drops that dominate reflectivity.  Neither of these 
parameters are necessarily correlated with the more conventional MVD, particularly for bimodal 
drop size distributions.  The MVD behaved very erratically for the bimodal distributions 
analyzed. 
 
The results also indicate that in small (Rayleigh) drop size and high LWC conditions, the 10-35-
95 or 10-95 GHz radar combinations can effectively estimate LWC, MVD, and MZD at finer 
than 1-km range resolution.  The potential benefit of this capability is that in the most hazardous 
conditions, an operational system will be able to provide pilots and ground crew more resolved 
maps of the spatial extent and intensity of icing potential. 
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GLOSSARY 

Drop Size Distribution The measured or modeled distribution of drop diameters for clouds or 
rain.  Units are number of drops per meter per cubic meter or m-4. 
 
Liquid Water Content (LWC) The water content, in grams per cubic meter, of the liquid 
portion of the cloud or precipitation.   
 
Mean Volume Diameter (MVD) Particle diameter corresponding to the mean of the volume 
distribution.  Volume distribution is computed from the given drop size (diameter) distribution.  
Note that median volume diameter (denoted MeVD in this report) is a much more commonly 
used icing variable. 
 
Median Volume Diameter (MeVD) Particle diameter corresponding to the median of volume 
distribution.  This is usually denoted by MVD in the icing literature. 
 
Mean Z Diameter (MZD) Particle diameter corresponding to mean cloud reflectivity. 
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Mie Scattering Mie scattering refers to the complete solution for electromagnetic scattering 
from dielectric spheres as computed by G. Mie in 1908.  This relatively complicated formulation 
is required when the particle size is within an order of magnitude of the electromagnetic 
wavelength.  Approximate formulas are often used in the optical limit (d>> λ ) and Rayleigh limit 
(d<< λ ) to simplify calculations. 
 
Multiparameter Radar Radar system capable of measuring a variety of parameters at one or 
more frequencies.  For a meteorological radar, these parameters include cloud reflectivity, 
Doppler spectrum of the scattered signal (or its moments), and four additional polarimetric 
parameters, including linear depolarization ratio LDR, differential reflectivity drZ , and the 
magnitude and phase of the copolarized correlation coefficient, hvρ . 
 
Neural Network A software algorithm used to determine output parameters based on a network 
of interconnected summing nodes with nonlinear response to the input.  The neural network was 
originally developed to imitate the function of interconnected brain neurons.  The basic building 
block of neural networks are nonlinear summing nodes that are coupled to other nodes through 
connections with variable weighting factors.  These weighting factors, along with the transfer 
function of the summing nodes, are adjusted to minimize estimation errors by using a set of 
known input and output vectors. 
 
Rayleigh Scattering Simplified scattering regime for particles much smaller than the 
electromagnetic wavelength.  For larger particles, on the order of the radar wavelength, the 
complete Mie solution must be computed.  Scattering from particles much larger than the 
electromagnetic wavelength can be approximated using optical limit formulas.   
 
Reflectivity, Z Frequency-independent parameter equal to the sixth moment of drop size 
distribution.  Reflectivity is proportional to backscattered power.  The sixth moment arises from 
the fact that the radar cross section of a small particle (d<< λ ) is proportional to the sixth power 
of particle diameter.  Reflectivity is typically expressed on a decibel scale as dBZ , which equals 

)(log10 10 Z . 
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APPENDIX A SUPPORTING DATA SCATTER PLOTS 
 

 
 

FIGURE A-1.  10-35-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-2.  10-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 
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FIGURE A-3.  10-35 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-4.  10-35-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-5.  10-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 

 

 
 

FIGURE A-6.  10-35 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-7.  10-35-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-8.  10-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 
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FIGURE A-9.  10-35 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-10.  10-35-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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FIGURE A-11.  10-95 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 

 

 
 

FIGURE A-12.  10-35 GHz RADARS, 2-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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FIGURE A-13.  10-35-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-14.  10-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 
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FIGURE A-15.  10-35 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-16.  10-35-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-17.  10-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 

 

 
 

FIGURE A-18.  10-35 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-19.  10-35-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-20.  10-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 
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FIGURE A-21.  10-35 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-22.  10-35-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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FIGURE A-23.  10-95 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 

 

 
 

FIGURE A-24.  10-35 GHz RADARS, 1-km RANGE RESOLUTION, 1-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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FIGURE A-25.  10-35-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-26.  10-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, ALL DATA 
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FIGURE A-27.  10-35 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, ALL DATA 

 

 
 

FIGURE A-28.  10-35-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-29.  10-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 

 

 
 

FIGURE A-30.  10-35 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND LOW LWC 
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FIGURE A-31.  10-35-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-32.  10-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, LARGE DROPS 
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FIGURE A-33.  10-35 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, LARGE DROPS 

 

 
 

FIGURE A-34.  10-35-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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FIGURE A-35.  10-95 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 

 
 

FIGURE A-36.  10-35 GHz RADARS, 500-m RANGE RESOLUTION, 0.5-dB STD 
MEASUREMENT NOISE, SMALL DROPS AND HIGH LWC 
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